Что такое гиалоплазма и как она организована

Цитоплазма эукариотических клеток состоит из полужидкого содержимого и органелл. Основное полужидкое вещество цитоплазмы называют гиалоплазмой (от греч. хиалос - стекло) или матриксом. Гиалоплазма является важной частью клетки, ее внутренней средой.

Она представляет собой сложную коллоидную систему, которая образована белками, нуклеиновыми кислотами, углеводами, водой и другими веществами.

В гиалоплазме в растворенном состоянии содержится большое количество аминокислот, нуклеотидов и других строительных блоков биополимеров, а также множество промежуточных продуктов, возникающих при синтезе и распаде макромолекул.

Гиалоплазма содержит большое количество ионов неорганических соединений, таких как Na+, K+, Ca+, Mg2+, Cl-, HCO3-, HPO42- и др.

Несмотря на то, что в электронном микроскопе гиалоплазма выглядит гомогенным веществом, она не является однородной.

Гиалоплазма состоит из двух фаз - жидкой и твердой. Жидкая фаза представляет собой коллоидный раствор различных белков и других веществ. В жидкой фазе содержится система тонких белковых нитей (~2 нм толщиной), пересекающих цитоплазму в различных направлениях - микротрабекулярная система.

Микротрабекулярная система связывает все внутриклеточные структуры клетки: мембранные органеллы, различные фибриллярные и трубчатые структуры. В местах пересечения или соединения концов трабекул располагаются группы рибосом.

Вместе с трубчатыми (микротрубочки) и фибриллярными (микрофиламенты) органеллами микротрабекулярная система образует внутриклеточный цитоплазматический скелет (цитоскелет). Цитоскелет способствует упорядоченному размещению всех структурных компонентов клетки. Микротрубочки обеспечивают определенную форму клетки и отвечают за направленное движение клеточных структур.

Микротрабекулярная система очень динамична. В определенных участках клетки ее нити могут легко распадаться на отдельные молекулы белка, которые переходят в раствор и изменяют физические свойства гиалоплазмы (изменяется агрегатное состояние отдельных участков цитоплазмы с жидкого на гелеобразное, и, наоборот, изменяется ее вязкость и текучесть). Это происходит при изменении внешних и внутренних условий.

С распадом и сборкой микротрабекул связывают также движение цитоплазмы, которое имеет очень важное значение к перемещении веществ и структурных элементов клетки.

Микротрубочки представляют собой полые неразветвленные цилиндры. Внешний диаметр их не превышает 30 нм; толщина стенки микротрубочки составляет около 5 нм. В длину они могут достигать нескольких микрометров. Микротрубочки состоят из глобулярных белков тубулинов; одна субъединица микротрубочки образована двумя молекулами. Субъединицы укладываются в спираль в присутствии ионов Mg2+, АТФ, ГТФ в кислой среде. Полимеризация субьединиц в спираль (образование микротрубочек) начинается при наличии матрицы. Считают, что роль матрицы (центра организации микротрубочек) могут играть центриоли, базальные тельца ресничек и жгутиков и кинетохоры хромосом. Разборка микротрубочек происходит при наличии ионов Ca2+ или в присутствии некоторых веществ (например, колхицина).

Микротрубочки вместе с микротрабекулярной системой выполняет опорную функцию в клетке, придавая ей определенную форму (при обработке клеток колхицином происходит разрушение микротрубочек; животные клетки, например, лишенные такой внутренней опоры, приобретают шаровидную форму). Они также образуют веретено деления и обеспечивают расхождение хромосом к полюсам клетки. Перемещение хромосом (хроматид) осуществляется благодаря способности микротрубочек скользить одна по одной. Эта скольжение обеспечивается благодаря энергии АТФ. Одни микротрубочки (хромосомные) прикрепляются к хромосомам и скользят по другим микротрубочкам (полюсным), в результате чего хромосомы во время деления клетки растаскиваются к ее полюсам. Микротрубочки отвечают также за перемещение клеточных органелл, которые с помощью микротрубочек направляются в нужные места подобно тому, как поезд следует в определенном направлении по рельсам.

Микрофиламенты представляют собой тонкие нити, встречающиеся во всей цитоплазме клеток. Особенно много их в поверхностном слое цитоплазмы, в ложноножках подвижных клеток, где они образуют густую сеть тонких нитей, которые пересекаются в разных направлениях. Пучки микрофиламентов обнаруживаются в микроворсинках эпителия кишечника. Микрофиламенты образуются из белка актина, глобулярные молекулы которого полимеризуются в длинную тонкую фибриллу (толщиной 6 нм), состоящую из двух спирально закрученных вокруг друг друга нитей. В клетках содержание актина составляет 10-15 % от общего количества всех белков. В гиалоплазме обнаруживаются также нити другого важного белка - миозина, которые образуют вместе с актиновым и микрофиламентами комплекс, способный к сокращению при расщеплении АТФ. Взаимодействие актина и миозина лежит в основе сокращения мышц. Микрофиламенты актина взаимодействуют с микротрубочками поверхностного слоя цитоплазмы и с плазмалеммой, обеспечивая двигательную активность гиалоплазмы. Считается также, что они участвуют в эндоцитозе, в образовании перетяжки при делении клеток животных и обеспечении амебоидного движения.

Функции гиалоплазмы

  1. Является внутренней средой клетки, в которой происходят многие химические процессы.
  2. Объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.
  3. Определяет местоположение органелл в клетке.
  4. Обеспечивает внутриклеточный транспорт веществ и перемещение органелл (например, движение хлоропластов в растительных клетках).
  5. Основное вместилище и зона перемещения молекул АТФ.
  6. Определяет форму клетки.

Читать далее