Трансляция

В ходе трансляции записанная на мРНК в виде последовательности нуклеотидных оснований информация преобразуется в последовательность аминокислот. Процесс этот протекает на рибосомах, и для его успешной реализации необходим еще один тип РНК - короткие транспортные РНК (тРНК). Каждая молекула тРНК имеет определенную пространственную конфигурацию, несколько напоминающую листок клевера.

В центре молекулы (на верхушке среднего «листка клевера») располагается триплет - антикодон, способный спариваться с комплементарным ему триплетом (кодоном) мРНК. Триплет на конце тРНК может образовывать ковалентную связь со специфической аминокислотой. В клетке существуют тРНК с разными антикодонами, соответственно, способные связываться с каждой из аминокислот, необходимых для синтеза белка.

Сама рибосома представляет собой сложную биохимическую систему, предназначенную для синтеза белка в соответствии с инструкциями, записанными в структуре мРНК. Сначала рибосома связывается с мРНК, а вслед за этим к комплексу мРНК-рибосома присоединяется несущая аминокислоту тРНК, антикодон которой комплементарен первому кодону мРНК. Затем рядом с первой тРНК присоединяется вторая с антикодоном, комплементарным второму кодону мРНК, и т. д. Специальный фермент связывает между собой две аминокислоты, доставленные этими двумя тРНК, которые пока еще остаются присоединенными к комплексу. После этого первая тРНК покидает рибосому, чтобы присоединить новую молекулу соответствующей ей аминокислоты. Тем временем рибосома продвигается вдоль мРНК и вторая тРНК с присоединенной к ней аминокислотой занимает место первой. Все это повторяется многократно до тех пор, пока рибосома не дойдет до стоп-кодона на мРНК, которым заканчивается любой структурный ген. Достигнув его, рибосома и вновь синтезированный белок отсоединяются от мРНК и переходят в цитоплазму клетки.

К одной молекуле мРНК прикрепляется обычно много рибосом, которые, продвигаясь вдоль нее, транслируют кодон за кодоном новые молекулы белка. Такая структура получила название полисома. Рибосомы работают очень эффективно: за 1 с в организме человека синтезируется 5 · 1014 молекул гемоглобина - белка с уникальной последовательностью из 574 аминокислот.

Процесс биосинтеза белка - один из самых энергоемких в реакциях пластического обмена клетки. На образование одной пептидной связи в синтезируемом белке расходуется четыре молекулы АТФ - две при присоединении аминокислоты к тРНК и две непосредственно на рибосоме.

Читать далее