Свойства систем, способных к самоорганизации

Из примеров видно, что не только «жизнь создает порядок», законы самоорганизации оказываются общими как для живой, так и для неживой природы. Однако каким же образом из бесструктурной субстанции самообразуются временны́е и пространственные упорядоченные структуры? Чтобы это понять, необходимо выяснить, что общего во всех системах, способных к самоорганизации.

1. Прежде всего следует ответить на вопрос, не противоречит ли возникновение порядка из хаоса закону возрастания энтропии, в соответствии с которым энтропия - мера беспорядка - непрерывно возрастает. Обратите внимание на то, что этот закон сформулирован для замкнутых систем, т. е. для систем, не взаимодействующих каким-либо образом с окружением. Все приведенные ранее примеры относятся к открытым системам, т. е. к системам, обменивающимся с окружением энергией и веществом.

Понятно, что можно выделить замкнутую систему, в которой происходит самоорганизация. Например, представим себе изолированный от излучения звезд космический корабль, в котором произрастают растения. Очевидно, что в любой такой замкнутой системе можно выделить подсистему, в которой именно и происходит самоорганизация и энтропия которой убывает, в то время как энтропия замкнутой системы в целом возрастает в полном соответствии со вторым началом термодинамики.

Процессы самоорганизации происходят в открытых системах. Если самоорганизация происходит в замкнутой системе, то всегда можно выделить открытую подсистему, в которой происходит самоорганизация, в то же время в замкнутой системе в целом беспорядок возрастает.

2. Второй отличительной особенностью систем, способных к самоорганизации, является неравновесное, неустойчивое состояние, в котором они находятся.

Так, внешнее воздействие - нагревание сосуда приводит к разнице температур в отдельных макроскопических областях жидкости, возникают так называемые ячейки Бенара.

Состояние системы, далекой от равновесия, является неустойчивым в отличие от состояния системы, близкой к равновесию, и именно в силу этой неустойчивости и возникают процессы, приводящие к возникновению структур.

Самоорганизация происходит в системах, состояние которых в данный момент существенно отличается от статистического равновесия.

3. Еще одна особенность способных к самоорганизации систем - большое число частиц, составляющих систему. Дело в том, что только в системах с большим числом частиц возможно возникновение флуктуаций - малых случайных возмущений, неоднородностей. Именно флуктуации способствуют переходу системы из неустойчивого состояния в более упорядоченное устойчивое состояние.

Наблюдать флуктуации достаточно сложно; как правило, они не проявляют себя в макроскопическом мире, где работают наши органы чувств.

Можно привести пример возникновения шумов в громкоговорителе при отсутствии передачи. Эти шумы появляются вследствие хаотического движения электронов в элементах радиотехнического устройства. Хаотическое движение электронов приводит к флуктуациям электрического тока, которые после усиления и преобразования в звук мы слышим.

Самоорганизация возможна лишь в системах с большим числом частиц, составляющих систему.

4. Процессы самоорганизации описываются достаточно сложными математическими уравнениями. Особенностью таких уравнений и соответственно систем, которые они описывают, является нелинейность. Это свойство, в частности, приводит к тому, что малые изменения в системе в какой-то момент времени могут оказать существенное влияние на дальнейшее развитие системы во времени. Именно в силу этого свойства процессы самоорганизации во многом определяются случайными факторами и не могут быть однозначно предсказаны.

Эволюция систем, способных к самоорганизации, описывается нелинейными уравнениями.

Читать далее