Закон сохранения механической энергии

Кинетическая и потенциальная энергии - это два вида механической энергии. Связаны ли они друг с другом? И если да, то в чем выражается эта связь?

Проследим за движением брошенного вверх металлического шарика. В нижней точке траектории сила действия руки на шарик сообщает ему кинетическую энергию. Шарик движется вверх. Скорость его движения, а значит, и кинетическая энергия уменьшаются. Но исчезает ли кинетическая энергия бесследно? Поднимаясь выше, шарик приобретает все большую потенциальную энергию (вспомните: \(П = gmh\)). В верхней точке скорость и кинетическая энергия шарика равны нулю, а потенциальная - максимальна. Значит, в рассмотренном примере происходит превращение энергии из одного вида (кинетической) в другой (потенциальную). При возвращении шарика обратно снова будет идти превращение энергии: с уменьшением высоты (и потенциальной энергии) увеличивается скорость движения шарика (и кинетическая энергия).

Если сопротивление воздуха мало (и им можно пренебречь), брошенный вверх шарик возвращается назад практически с такой же, как в момент бросания, скоростью и кинетической энергией.

А каким будет значение механической энергии шарика в промежуточных точках? Например, на высоте \(h_{1}\)? При подъеме шарика на высоту \(h_{1}\) его кинетическая энергия уменьшилась, но при этом появилась потенциальная энергия. А чему равна их сумма, т. е. полная механическая энергия? Данный и подобные опыты и расчеты показывают, что если сил сопротивления нет, то полная механическая энергия тела (системы тел), равная сумме кинетической и потенциальной энергий (\(E = К + П\)), сохраняется. Данное утверждение о постоянстве механической энергии в физике называют законом сохранения механической энергии.

Если силами трения или сопротивления движению нельзя пренебречь, этот закон не выполняется. Заменим в опыте металлический шарик на пенопластовый брусок такой же массы. Мы увидим, что даже при большей, чем у металлического шарика, начальной скорости он не поднимется на такую же высоту и вернется назад с заметно меньшей скоростью. Убывает кинетическая энергия движущейся по горизонтальной поверхности льда шайбы, но потенциальная энергия взамен не появляется. За счет кинетической энергии шайбы совершается работа против сил трения.

В заключение заметим, что явление превращения энергии из одного вида в другой человек научился использовать в практических целях. Энергия падающей воды приводит в действие водяные мельницы и гидроэлектростанции. В Республике Беларусь успешно реализуется государственная программа использования энергии рек. Важная роль в ней отводится таким рекам, как Неман и Западная Двина. На Немане работает Гродненская ГЭС мощностью 17 МВт. Установленная мощность Витебской ГЭС на Западной Двине - 40 МВт.

Кинетическую энергию ветра человек с давних времен начал использовать с помощью паруса, затем стал применять в ветряных мельницах. В последние годы в Беларуси начато сооружение ветроэлектростанций. Они уникальны тем, что не оказывают вредного воздействия на окружающую среду. Во многих странах успешно используют энергию приливов и отливов вод морей и океанов. Там созданы приливные электростанции.

Главные выводы:

  1. Кинетическая и потенциальная энергии взаимопревращаемы.
  2. При отсутствии сил трения и сопротивления движению полная механическая энергия тела (системы тел) сохраняется.
  3. Закон сохранения механической энергии не выполняется, если силами трения (сопротивления) нельзя пренебречь.

Читать далее